Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38660802

RESUMO

BACKGROUND: Myxomatous valve disease (MVD) is the most common cause of mitral regurgitation, leading to impaired cardiac function and heart failure. MVD in a mouse model of Marfan syndrome includes valve leaflet thickening and progressive valve degeneration. However, the underlying mechanisms by which the disease progresses remain undefined. METHODS: Mice with Fibrillin 1 gene variant Fbn1C1039G/+ recapitulate histopathologic features of Marfan syndrome, and Wnt signaling activity was detected in TCF/Lef-lacZ reporter mice. Single-cell RNA sequencing was performed from mitral valves of wild-type and Fbn1C1039G/+ mice at 1 month of age. Inhibition of Wnt signaling was achieved by conditional induction of the secreted Wnt inhibitor Dkk1 expression in periostin-expressing valve interstitial cells of Periostin-Cre; tetO-Dkk1; R26rtTA; TCF/Lef-lacZ; Fbn1C1039G/+ mice. Dietary doxycycline was administered for 1 month beginning with MVD initiation (1-month-old) or MVD progression (2-month-old). Histological evaluation and immunofluorescence for ECM (extracellular matrix) and immune cells were performed. RESULTS: Wnt signaling is activated early in mitral valve disease progression, before immune cell infiltration in Fbn1C1039G/+ mice. Single-cell transcriptomics revealed similar mitral valve cell heterogeneity between wild-type and Fbn1C1039G/+ mice at 1 month of age. Wnt pathway genes were predominantly expressed in valve interstitial cells and valve endothelial cells of Fbn1C1039G/+ mice. Inhibition of Wnt signaling in Fbn1C1039G/+ mice at 1 month of age prevented the initiation of MVD as indicated by improved ECM remodeling and reduced valve leaflet thickness with decreased infiltrating macrophages. However, later, Wnt inhibition starting at 2 months did not prevent the progression of MVD. CONCLUSIONS: Wnt signaling is involved in the initiation of mitral valve abnormalities and inflammation but is not responsible for later-stage valve disease progression once it has been initiated. Thus, Wnt signaling contributes to MVD progression in a time-dependent manner and provides a promising therapeutic target for the early treatment of congenital MVD in Marfan syndrome.

2.
Arterioscler Thromb Vasc Biol ; 43(8): 1478-1493, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37381982

RESUMO

BACKGROUND: Specialized valve endothelial cell (VEC) populations are localized oriented to blood flow in developing aortic and mitral valves, but their roles in valve development and disease are unknown. In the aortic valve (AoV), a population of VECs on the fibrosa side expresses the transcription factor Prox1 together with genes found in lymphatic ECs. In this study, we examine Prox1's role in regulating a lymphatic-like gene network and promoting VEC diversity required for the development of the stratified trilaminar extracellular matrix (ECM) of murine AoV leaflets. METHODS: To determine whether disruption of Prox1 localization affects heart valve development, we generated mice (NFATc1enCre Prox1 gain-of-function) in which Prox1 is overexpressed on the ventricularis side of the AoV beginning in embryonic development. To identify potential targets of Prox1, we performed cleavage under targets and release using nuclease on wild-type and NFATc1enCre Prox1 gain-of-function AoVs with validation by colocalization in vivo using RNA in situ hybridization in NFATc1enCre Prox1 gain-of-function AoVs. Natural induction of Prox1 and target gene expression was evaluated in myxomatous AoVs in a mouse model of Marfan syndrome (Fbn1C1039G/+). RESULTS: The overexpression of Prox1 is sufficient to cause enlargement of AoVs by postnatal day (P)0, as well as a decrease in ventricularis-specific gene expression and disorganized interstitial ECM layers at P7. We identified potential targets of Prox1 known to play roles in lymphatic ECs including Flt1, Efnb2, Egfl7, and Cx37. Ectopic Prox1 colocalized with induced Flt1, Efnb2, and Cx37 expression in NFATc1enCre Prox1 gain-of-function AoVs. Moreover, in Marfan syndrome myxomatous AoVs, endogenous Prox1, and its identified targets, were ectopically induced in ventricularis side VECs. CONCLUSIONS: Our results support a role for Prox1 in localized lymphatic-like gene expression on the fibrosa side of the AoV. Furthermore, localized VEC specialization is required for development of the stratified trilaminar ECM critical for AoV function and is dysregulated in congenitally malformed valves.


Assuntos
Valva Aórtica , Síndrome de Marfan , Camundongos , Animais , Valva Aórtica/metabolismo , Síndrome de Marfan/metabolismo , Matriz Extracelular/metabolismo , Fatores de Transcrição/metabolismo , Células Endoteliais/metabolismo
3.
J Mol Cell Cardiol ; 179: 30-41, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37062247

RESUMO

Rodent cardiomyocytes undergo mitotic arrest in the first postnatal week. Here, we investigate the role of transcriptional co-regulator Btg2 (B-cell translocation gene 2) and functionally-similar homolog Btg1 in postnatal cardiomyocyte cell cycling and maturation. Btg1 and Btg2 (Btg1/2) are expressed in neonatal C57BL/6 mouse left ventricles coincident with cardiomyocyte cell cycle arrest. Btg1/2 constitutive double knockout (DKO) mouse hearts exhibit increased pHH3+ mitotic cardiomyocytes compared to Wildtype at postnatal day (P)7, but not at P30. Similarly, neonatal AAV9-mediated Btg1/2 double knockdown (DKD) mouse hearts exhibit increased EdU+ mitotic cardiomyocytes compared to Scramble AAV9-shRNA controls at P7, but not at P14. In neonatal rat ventricular myocyte (NRVM) cultures, siRNA-mediated Btg1/2 single and double knockdown cohorts showed increased EdU+ cardiomyocytes compared to Scramble siRNA controls, without increase in binucleation or nuclear DNA content. RNAseq analyses of Btg1/2-depleted NRVMs support a role for Btg1/2 in inhibiting cell proliferation, and in modulating reactive oxygen species response pathways, implicated in neonatal cardiomyocyte cell cycle arrest. Together, these data identify Btg1 and Btg2 as novel contributing factors in mammalian cardiomyocyte cell cycle arrest after birth.


Assuntos
Proteínas Imediatamente Precoces , Proteínas Supressoras de Tumor , Animais , Camundongos , Ratos , Ciclo Celular/genética , Pontos de Checagem do Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Mamíferos/metabolismo , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Proteínas de Neoplasias/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas Supressoras de Tumor/metabolismo
4.
Anat Rec (Hoboken) ; 302(1): 125-135, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30306735

RESUMO

Epithelial-to-mesenchymal transition (EMT) enables stationary epithelial cells to exhibit migratory behavior and is the key step that initiates heart valve development. Recent studies suggest that EMT is reactivated in the pathogenesis of myxomatous valve disease (MVD), a condition that involves the progressive degeneration and thickening of valve leaflets. These studies have been limited to in vitro experimentation and reliance on histologic costaining of epithelial and mesenchymal markers as evidence of EMT in mouse and sheep models of valve disease. However, longitudinal analysis of cell lineage origins and potential pathogenic or reparative contributions of newly generated mesenchymal cells have not been reported previously. In this study, a genetic lineage tracing strategy was pursued by irreversibly labeling valve endothelial cells in the Osteogenesis imperfecta and Marfan syndrome mouse models to determine whether they undergo EMT during valve disease. Tie2-CreER T2 and Cdh5(PAC)-CreER T2 mouse lines were used in combination with colorimetric and fluorescent reporters for longitudinal assessment of endothelial cells. These lineage tracing experiments showed no evidence of EMT during adult valve homeostasis or valve pathogenesis. Additionally, CD31 and smooth muscle α-actin (αSMA) double-positive cells, used as an indicator of EMT, were not detected, and levels of EMT transcription factors were not altered. Interestingly, contrary to the endothelial cell-specific Cdh5(PAC)-CreER T2 driver line, Tie2-CreER T2 lineage-derived cells in diseased heart valves also included CD45+ leukocytes. Altogether, our data indicate that EMT is not a feature of valve homeostasis and disease but that increased immune cells may contribute to MVD. Anat Rec, 302:125-135, 2019. © 2018 Wiley Periodicals, Inc.


Assuntos
Linhagem da Célula , Modelos Animais de Doenças , Endotélio Vascular/patologia , Regulação da Expressão Gênica no Desenvolvimento , Valvas Cardíacas/patologia , Síndrome de Marfan/patologia , Osteogênese Imperfeita/patologia , Animais , Colágeno Tipo I/fisiologia , Endotélio Vascular/metabolismo , Transição Epitelial-Mesenquimal , Feminino , Fibrilina-1/fisiologia , Valvas Cardíacas/metabolismo , Homeostase , Masculino , Síndrome de Marfan/metabolismo , Camundongos , Camundongos Knockout , Organogênese , Osteogênese Imperfeita/metabolismo
5.
Eur Heart J ; 38(9): 675-686, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26491108

RESUMO

AIMS: Congenital anomalies of arterial valves are common birth defects, leading to valvar stenosis. With no pharmaceutical treatment that can prevent the disease progression, prosthetic replacement is the only choice of treatment, incurring considerable morbidity and mortality. Animal models presenting localized anomalies and stenosis of congenital arterial valves similar to that of humans are critically needed research tools to uncover developmental molecular mechanisms underlying this devastating human condition. METHODS AND RESULTS: We generated and characterized mouse models with conditionally altered Notch signalling in endothelial or interstitial cells of developing valves. Mice with inactivation of Notch1 signalling in valvar endothelial cells (VEC) developed congenital anomalies of arterial valves including bicuspid aortic valves and valvar stenosis. Notch1 signalling in VEC was required for repressing proliferation and activating apoptosis of valvar interstitial cells (VIC) after endocardial-to-mesenchymal transformation (EMT). We showed that Notch signalling regulated Tnfα expression in vivo, and Tnf signalling was necessary for apoptosis of VIC and post-EMT development of arterial valves. Furthermore, activation or inhibition of Notch signalling in cultured pig aortic VEC-promoted or suppressed apoptosis of VIC, respectively. CONCLUSION: We have now met the need of critical animal models and shown that Notch-Tnf signalling balances proliferation and apoptosis for post-EMT development of arterial valves. Our results suggest that mutations in its components may lead to congenital anomaly of aortic valves and valvar stenosis in humans.


Assuntos
Estenose da Valva Aórtica/etiologia , Receptor Notch1/metabolismo , Animais , Valva Aórtica/anormalidades , Estenose da Valva Aórtica/embriologia , Estenose da Valva Aórtica/fisiopatologia , Apoptose/fisiologia , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Células Endoteliais/fisiologia , Homeostase/fisiologia , Células-Tronco Mesenquimais/fisiologia , Camundongos Knockout , Receptores do Fator de Necrose Tumoral/metabolismo , Transdução de Sinais/fisiologia , Fator de Necrose Tumoral alfa/metabolismo
6.
Arterioscler Thromb Vasc Biol ; 34(12): 2601-8, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25341799

RESUMO

OBJECTIVE: The Wnt/ß-catenin signaling pathway has been implicated in human heart valve disease and is required for early heart valve formation in mouse and zebrafish. However, the specific functions of Wnt/ß-catenin signaling activity in heart valve maturation and maintenance in adults have not been determined previously. APPROACH AND RESULTS: Here, we show that Wnt/ß-catenin signaling inhibits Sox9 nuclear localization and proteoglycan expression in cultured chicken embryo aortic valves. Loss of ß-catenin in vivo in mice, using Periostin(Postn)Cre-mediated tissue-restricted loss of ß-catenin (Ctnnb1) in valvular interstitial cells, leads to the formation of aberrant chondrogenic nodules and induction of chondrogenic gene expression in adult aortic valves. These nodular cells strongly express nuclear Sox9 and Sox9 downstream chondrogenic extracellular matrix genes, including Aggrecan, Col2a1, and Col10a1. Excessive chondrogenic proteoglycan accumulation and disruption of stratified extracellular matrix maintenance in the aortic valve leaflets are characteristics of myxomatous valve disease. Both in vitro and in vivo data demonstrate that the loss of Wnt/ß-catenin signaling leads to increased nuclear expression of Sox9 concomitant with induced expression of chondrogenic extracellular matrix proteins. CONCLUSIONS: ß-Catenin limits Sox9 nuclear localization and inhibits chondrogenic differentiation during valve development and in adult aortic valve homeostasis.


Assuntos
Valva Aórtica/citologia , Valva Aórtica/metabolismo , beta Catenina/metabolismo , Animais , Valva Aórtica/embriologia , Valva Aórtica/patologia , Proteínas Aviárias/metabolismo , Doença da Válvula Aórtica Bicúspide , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Embrião de Galinha , Condrogênese/genética , Condrogênese/fisiologia , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Expressão Gênica , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/metabolismo , Cardiopatias Congênitas/patologia , Doenças das Valvas Cardíacas/genética , Doenças das Valvas Cardíacas/metabolismo , Doenças das Valvas Cardíacas/patologia , Humanos , Camundongos , Camundongos Knockout , Proteoglicanas/metabolismo , Fatores de Transcrição SOX9/metabolismo , Via de Sinalização Wnt , beta Catenina/deficiência , beta Catenina/genética
7.
J Card Fail ; 18(7): 585-95, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22748493

RESUMO

BACKGROUND: Placement of an elastic biodegradable patch onto a subacute myocardial infarct (MI) provides temporary elastic support that may act to effectively alter adverse left ventricular (LV) remodeling processes. METHODS: Two weeks after permanent left coronary ligation in Lewis rats, the infarcted anterior wall was covered with polyester urethane urea (MI + PEUU; n = 15) or expanded polytetrafluoroethylene (MI + ePTFE; n = 15) patches, or had no implantation (MI + sham; n = 12). Eight weeks after surgery, cardiac function and histology were assessed. RESULTS: The ventricular wall in the MI + ePTFE and MI + sham groups was composed of fibrous tissue, whereas PEUU implantation induced α-smooth muscle actin-positive muscle bundles coexpressing sarcomeric α-actinin and cardiac-specific troponin-T. This pattern of colocalization was also found in developing embryonic myocardium. Cardiac transcription factors Nkx-2.5 and GATA-4 were strongly expressed in the muscle bundles. In the MI + sham group, end-diastolic LV cavity area (EDA) increased and the percentage of fractional area change (%FAC) decreased. For ePTFE patched animals, both EDA and %FAC decreased. In contrast, with MI + PEUU patching, %FAC increased and EDA was maintained. With dobutamine-stress echocardiography, MI + PEUU patched LVs possessed contractile reserve significantly larger than the MI + sham group. CONCLUSIONS: MI + PEUU patch implantation onto subacute infarcted myocardium induced muscle cellularization with characteristics of early developmental cardiomyocytes as well as providing a functional reserve.


Assuntos
Materiais Biocompatíveis/administração & dosagem , Infarto do Miocárdio/patologia , Infarto do Miocárdio/terapia , Miocárdio/metabolismo , Miocárdio/patologia , Actinas/metabolismo , Animais , Animais Recém-Nascidos , Conexina 43/metabolismo , Ecocardiografia , Elasticidade , Feminino , Feto , Fibrose , Fator de Transcrição GATA4/genética , Fator de Transcrição GATA4/metabolismo , Coração/embriologia , Ventrículos do Coração/patologia , Proteína Homeobox Nkx-2.5 , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Imuno-Histoquímica , Microscopia Eletrônica , Politetrafluoretileno , Poliuretanos , RNA Mensageiro/metabolismo , Ratos , Regeneração , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Troponina T/metabolismo , Remodelação Ventricular
8.
J Mol Cell Cardiol ; 52(3): 689-700, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22248532

RESUMO

Studies of human diseased aortic valves have demonstrated increased expression of genetic markers of valve progenitors and osteogenic differentiation associated with pathogenesis. Three potential mouse models of valve disease were examined for cellular pathology, morphology, and induction of valvulogenic, chondrogenic, and osteogenic markers. Osteogenesis imperfecta murine (Oim) mice, with a mutation in Col1a2, have distal leaflet thickening and increased proteoglycan composition characteristic of myxomatous valve disease. Periostin null mice also exhibit dysregulation of the ECM with thickening in the aortic midvalve region, but do not have an overall increase in valve leaflet surface area. Klotho null mice are a model for premature aging and exhibit calcific nodules in the aortic valve hinge-region, but do not exhibit leaflet thickening, ECM disorganization, or inflammation. Oim/oim mice have increased expression of valve progenitor markers Twist1, Col2a1, Mmp13, Sox9 and Hapln1, in addition to increased Col10a1 and Asporin expression, consistent with increased proteoglycan composition. Periostin null aortic valves exhibit relatively normal gene expression with slightly increased expression of Mmp13 and Hapln1. In contrast, Klotho null aortic valves have increased expression of Runx2, consistent with the calcified phenotype, in addition to increased expression of Sox9, Col10a1, and osteopontin. Together these studies demonstrate that oim/oim mice exhibit histological and molecular characteristics of myxomatous valve disease and Klotho null mice are a new model for calcific aortic valve disease.


Assuntos
Valva Aórtica/patologia , Calcinose/genética , Condrogênese/genética , Doenças das Valvas Cardíacas/genética , Doenças das Valvas Cardíacas/patologia , Osteogênese/genética , Transdução de Sinais , Animais , Valva Aórtica/diagnóstico por imagem , Moléculas de Adesão Celular/deficiência , Moléculas de Adesão Celular/genética , Proliferação de Células , Células do Tecido Conjuntivo/metabolismo , Modelos Animais de Doenças , Ecocardiografia , Glucuronidase/deficiência , Glucuronidase/genética , Doenças das Valvas Cardíacas/diagnóstico por imagem , Humanos , Proteínas Klotho , Camundongos , Camundongos Knockout , Osteogênese Imperfeita/genética , Osteogênese Imperfeita/patologia , Transporte Proteico , Proteoglicanas/metabolismo
9.
Dev Biol ; 338(2): 127-35, 2010 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-19961844

RESUMO

Wnt signaling mediated by beta-catenin has been implicated in early endocardial cushion development, but its roles in later stages of heart valve maturation and homeostasis have not been identified. Multiple Wnt ligands and pathway genes are differentially expressed during heart valve development. At E12.5, Wnt2 is expressed in cushion mesenchyme, whereas Wnt4 and Wnt9b are predominant in overlying endothelial cells. At E17.5, both Wnt3a and Wnt7b are expressed in the remodeling atrioventricular (AV) and semilunar valves. In addition, the TOPGAL Wnt reporter transgene is active throughout the developing AV and semilunar valves at E16.5, with more localized expression in the stratified valve leaflets after birth. In chicken embryo aortic valves, genes characteristic of osteogenic cell lineages including periostin, osteonectin, and Id2 are expressed specifically in the collagen-rich fibrosa layer at E14. Treatment of E14 aortic valve interstitial cells (VICs) in culture with osteogenic media results in increased expression of multiple genes associated with bone formation. Treatment of VIC with Wnt3a leads to nuclear localization of beta-catenin and induction of periostin and matrix gla protein but does not induce genes associated with later stages of osteogenesis. Together, these studies provide evidence for Wnt signaling as a regulator of endocardial cushion maturation as well as valve leaflet stratification, homeostasis, and pathogenesis.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Valvas Cardíacas/crescimento & desenvolvimento , Osteogênese/genética , Proteínas Wnt/fisiologia , Animais , Valva Aórtica/embriologia , Valva Aórtica/crescimento & desenvolvimento , Embrião de Galinha , Embrião de Mamíferos , Valvas Cardíacas/embriologia , Camundongos , Proteínas Proto-Oncogênicas/genética , Transdução de Sinais , Proteínas Wnt/genética , Proteína Wnt3 , Proteína Wnt3A
10.
Circ Res ; 102(6): 686-94, 2008 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-18218983

RESUMO

Cardiomyocytes actively proliferate during embryogenesis and withdraw from the cell cycle during neonatal stages. FOXO (Forkhead O) transcription factors are a direct target of phosphatidylinositol-3 kinase/AKT signaling in skeletal and smooth muscle and regulate expression of the Cip/Kip family of cyclin kinase inhibitors in other cell types; however, the interaction of phosphatidylinositol-3 kinase/AKT signaling, FOXO transcription factors, and cyclin kinase inhibitor expression has not been reported for the developing heart. Here, we show that FOXO1 and FOXO3 are expressed in the developing myocardium concomitant with increased cyclin kinase inhibitor expression from embryonic to neonatal stages. Cell culture studies show that embryonic cardiomyocytes are responsive to insulin-like growth factor 1 stimulation, which results in the induction of the phosphatidylinositol-3 kinase/AKT pathway, cytoplasmic localization of FOXO proteins, and increased myocyte proliferation. Likewise, adenoviral-mediated expression of AKT promotes cardiomyocyte proliferation and cytoplasmic localization of FOXO. In contrast, increased expression of FOXO1 negatively affects myocyte proliferation. In vivo myocyte-specific transgenic expression of FOXO1 during heart development causes embryonic lethality at embryonic day 10.5 because of severe myocardial defects that coincide with premature activation of p21(cip1), p27(kip1), and p57(kip2) and decreased myocyte proliferation. Transgenic expression of dominant negative FOXO1 in cardiomyocytes does not obviously affect heart development at embryonic day 10.5, but results in abnormal morphology of the myocardium by embryonic day 18.5 along with decreased cyclin kinase inhibitor expression and increased myocyte proliferation. These data support FOXO transcription factors as negative regulators of cardiomyocyte proliferation and promoters of neonatal cell cycle withdrawal during heart development.


Assuntos
Ciclo Celular , Proliferação de Células , Fatores de Transcrição Forkhead/metabolismo , Coração/crescimento & desenvolvimento , Miócitos Cardíacos/metabolismo , Transdução de Sinais , Fatores Etários , Envelhecimento/metabolismo , Animais , Animais Recém-Nascidos , Ciclo Celular/genética , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Inibidor de Quinase Dependente de Ciclina p57/metabolismo , Proteína Forkhead Box O1 , Proteína Forkhead Box O3 , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica no Desenvolvimento , Coração/embriologia , Fator de Crescimento Insulin-Like I/metabolismo , Camundongos , Camundongos Transgênicos , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Transporte Proteico , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/genética , Transdução Genética
11.
Dev Biol ; 292(2): 292-302, 2006 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-16680829

RESUMO

The atrioventricular heart valve leaflets and chordae tendineae are composed of diverse cell lineages and highly organized extracellular matrices that share characteristics with cartilage and tendon cell types in the limb buds and somites. During embryonic chicken valvulogenesis, aggrecan and sox9, characteristic of cartilage cells, are observed in the AV valve leaflets, in contrast to tendon-associated genes scleraxis and tenascin, present in the chordae tendineae. In the limb buds and somites, cartilage cell lineage differentiation is regulated by BMP2, while FGF4 controls tendon cell fate. The ability of BMP2 and FGF4 to induce similar patterns of gene expression in heart valve precursor cells was examined. In multiple assays of cells from prefused endocardial cushions, BMP2 is sufficient to activate Smad1/5/8 phosphorylation and induce sox9 and aggrecan expression, while FGF4 treatment increases phosphorylated MAPK (dpERK) signaling and promotes expression of scleraxis and tenascin. However, these treatments do not alter differentiated lineage gene expression in valve progenitors from fused cushions of older embryos. Together, these studies define regulatory pathways of AV valve progenitor cell diversification into leaflets and chordae tendineae that share inductive interactions and differentiation phenotypes with cartilage and tendon cell lineages.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Linhagem da Célula , Fator 4 de Crescimento de Fibroblastos/metabolismo , Valvas Cardíacas/citologia , Valvas Cardíacas/embriologia , Células-Tronco , Fator de Crescimento Transformador beta/metabolismo , Animais , Proteína Morfogenética Óssea 2 , Diferenciação Celular , Células Cultivadas , Embrião de Galinha , Colágeno/metabolismo , Combinação de Medicamentos , Regulação da Expressão Gênica no Desenvolvimento , Valvas Cardíacas/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Laminina/metabolismo , Proteoglicanas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células-Tronco/citologia , Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA